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ABSTRACT

Recognizing action patterns and detecting action instances are vi-
tal for spatial temporal action detection task, which aims to recog-
nize the actions of interest in untrimmed videos and localize them in
both space and time. The mainstream action tubelet detectors, how-
ever, ignore the conflicts in features between localization and classi-
fication, and use localization features for temporal modeling, which
leads to ineffective action classification. In this paper, we propose
the Spatio-Temporal Motion Aggregation mechanism for integrat-
ing the local motion feature from a short term snippet and the longer
spatio-temporal information to predict the action category. We de-
sign the Class-Agnostic Center Localization module to perform ac-
tion instance center localization in the Class-Agnostic manner. Be-
sides, Movement and Size Regression is proposed for movement
estimation and spatial extent detection by using Gaussian kernels
to encode training samples. These three modules work together to
generate the tubelet detection results, which could be further linked
to yield video-level tubes with a matching strategy. Our detector
achieves the state-of-the-art performance in both frame-mAP and
video-mAP metrics, on the UCF-24 and JHMDB datasets.

Index Terms— video understanding, video action detection,
spatio-temporal action detection, anchor-free detector

1. INTRODUCTION

As a crucial problem in video understanding, spatial temporal ac-
tion detection aims to localize the action instances in both space and
time, at the same time predicts their action labels. Spatial tempo-
ral action detection can be widely applied in numerous scenarios,
such as autonomous driving, video surveillance and advanced video
search engines, etc.

The mainstream methods of spatial temporal action detection
can be divided into frame-level methods and tubelet-level methods,
which perform action detection on either per-frame or tubelet, and
then generate action tubes by linking the detection results.

Frame-level methods have been explored in [1, 2, 3, 4, 5, 6],
which utilize 2D detectors to detect 2D boxes from each frame, and
then classify the corresponding spatio-temporal features RoI-pooled
over actor proposals for action instance recognition. These frame-
level methods fail to well capture the correlation between adjacent
frames in temporal dimension and thus are less effective for detect-
ing action tubes in video level. Tubelet-level methods perform ac-
tion detection at the clip (i.e., a short video snippet) level to leverage
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temporal correlation information which output the regressed tubelets
(i.e., a short sequence of bounding boxes) with a sequence of frames
as input [7, 8, 9, 10, 11, 12]. These methods perform action detection
on consecutive multiple frames, which leverage the temporal corre-
lation to acheive promising performance in video-level detection.

Though tubelet-level methods have achieved promising results
on standard benchmarks, there are still some challenges to be solved.
Firstly, tubelet-level methods are not effective in action modeling,
since the action recognition relies on the spatial feature extracted by
2D CNNs from a short receptive field in temporal dimension. And
performing localization and classification tasks in one network will
lead to the conflicts in features, as demonstrated in the field of im-
age object detection [13, 14]. This problem becomes more severe
when performing video action detection with temporal dimension,
as simply taking a longer clip as input will benefit the action classi-
fier to obtain longer temporal information though, but make action
localization more challenging. Secondly, tubelet-level methods are
mostly anchor-based, which leads to a huge number of pre-defined
anchor boxes in spatio-temporal dimension and increase both mem-
ory cost and training time, as demonstrated in [8, 12].

To tackle these challenges, we propose a tubelet-level method in
an anchor-free manner, termed as Spatial Temporal Motion Aggre-
gation Network and our contributions are as follows.

(1) To avoid the conflicts in features between localization and
classification in tubelet-level methods, we design Class-Agnostic
Center Localization and Spatio-Temporal Motion Aggregation to
perform center localization and action classification tasks respec-
tively, instead of performing them in one module. Class-Agnostic
Center Localization generates the objectness probability heatmap
and locate the object center without predicting the category. Spatio-
Temporal Motion Aggregation integrates the local motion feature
from the action snippet and the spatial temporal information from the
longer temporal receptive field to perform the action classification.

(2) We adopt an anchor-free detection strategy that using a
movement branch to regress center offset and a size branch to get
the spatial extent of bounding box in the clip based on [12]. Actu-
ally, treating the detected center point of each frame as one training
sample is not optimal for detection, since a mini perturbation of the
center localization will lead to an inaccurate movement regression
and size regression in the inference. Inspired by recent anchor-free
detector [15], we treat all pixels in a Gaussian-area as training sam-
ples both for movement regression and size regression, thus can
make the network not sensitive to the position of key frame’s center.

(3) We perform experiments on two challenging action tube de-
tection benchmarks of UCF-24 [16] and JHMDB [17]. Our method
outperforms the existing state-of-the-art tubelet-level approaches in
both frame-mAP and video-mAP on these two datasets.
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(a) (b)

Fig. 1. The pipeline of Spatio-Temporal Motion Aggregation network which consists of STMA mechanism and spatial detection branch, as
shown in (a). The implementation details of STMA mechanism are shown in (b), best view in colors.

2. APPROACH

2.1. Framework Overview

Action tubelet detection aims at localizing a short sequence of
bounding boxes from an input clip and recognizing its action cat-
egory as well. As shown in Fig. 1(a), Given a T frames clip
I ∈ RT×3×W×H with resolution of W ×H , we sample K consec-
utive frames from the input clip to generate a short action snippet
Isnippet ∈ RK×3×W×H . First, we input the whole clip I into a 3D

backbone to extract spatio-temporal feature F ∈ R
T
Rt
×C× W

Rs
× H

Rs ,
and input the short action snippet into a weight shared 2D back-
bone to extract spatial feature f ∈ RK×c×

W
rs
× H

rs , simultaneously.
Rs and rs, Rt, C and c are the spatial down-sample rate, tem-
poral down-sample rate, and channel dimension of feature F and
f , respectively. Then, we design two branches to perform tubelet
detection in an anchor-free manner. The first branch is Action
Recognition, which is defined over all frames in the clip. Spatio-
Temporal Motion Aggregation mechanism is used in this branch to
aggregate the local motion information from the short action snippet
and the longer spatio-temporal information from the entire clip to
predict action category. The second branch is Spatial Detection,
which consists of three parts: Class-Agnostic Center Localization,
Movement Regression and Size Regression and performs the spa-
tial detection on each frame in the short action snippet. These two
branches collaborate together to yield tubelet detection results from
the input clip, which will be further linked to form action tube in a
long untrimmed video by following a common linking strategy.

2.2. Spatio-Temporal Motion Aggregation

In action recognition branch, we propose Spatio-Temporal Motion
Aggregation (STMA) mechanism to integrate the local motion fea-
ture in the short term snippet and the longer temporal information
extracted from 3D backbone, as shown in Fig. 1(b). To obtain richer
semantic information for classification and make the features match
in spatial scale, we use convolutional layer with stride 2 to conduct
down-sampling in feature f . Then, we adopt Motion Excitation

(ME) to capture the motion information from adjacent frames based
on the feature level. Motion feature fm is modeled following the
similar operation presented in [18, 19] as shown in Eq.(1). The mo-
tion feature is concatenated to each other according to the temporal
dimension with zero-padding in the last element, as follows:

fm = Conv(f(t+ 1))− f(t), fm ∈ Rc1×
W
rs
× H

rs . (1)

fM = [fm(1), ..., fm(K − 1), 0], fM ∈ RK×c1×
W
rs
× H

rs . (2)

The fM is processed by spatial average pooling, convolutional layer
and sigmoid to generate a mask M ∈ RK×c1×1×1. The mask M is
multiplied element-wise with the input, which is added to the input
as a residual. Then, we concatenate the motion feature fME and
F to perform a channel-wise self-attention for feature aggregation.
Finally, we feed the fused feature to a convolutional layer to predict
the action category and use cross entropy as classification loss.

2.3. Class-Agnostic Center Localization

Class-Agnostic Center Localization aims to locate the center po-
sitions of action instances for key (center) frame in short snippet.
In order to decouple the center localization and classification, it is
worth noting that we perform center localization in a class-agnostic
manner instead of locating center and predicting action category to-
gether in one branch [8, 12, 20]. Based on the short-term snippet fea-
ture representation extracted by 2D backbone f ∈ RK×c×

W
rs
× H

rs ,
we locate the key frame center by estimating a objectness probabil-
ities heatmap P̂ ∈ [0, 1]

W
rs
× H

rs , and P̂xy represents the probability
of an action instance centered at position (x, y). We use a Gaussian
kernel to generate the heatmap Pxy = exp(− (x−xi)2+(y−yi)2

2σ2 ) for
the ith action instance’s key frame center in the current action snip-
pet. We leverage a focal loss for training the probability heatmap, as
represented in Eq.(3):

Lct = −
1

N

∑
x,y

{
(1− P̂xy)

α
log(P̂xy) if Pxy = 1

(1− Pxy)β(P̂xy)
α
log(1− P̂xy) otherwise

(3)
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2.4. Gaussian kernel based Regression

Inspired by 2D object detection method [15], we utilize the pixels
inside a Gaussian kernel area as the training samples, instead of sin-
gle pixel at the object center. We leverage a different Gaussian ker-
nel Gi(x, y) = exp(− (x−xi)2+(y−yi)2

2σr2 ) from center localization,
where (xi, yi) represents the center of key frame location for the
ith action instance in current snippet. And the non-zero part in Gi
named as Gaussian area Ai and each pixel in Ai will be treated as a
training sample for both movement and size regression.

Movement regression. Movement Regression has been ex-
plored by [12] previously, which captures the correlation between
adjacent frames in temporal dimension by regressing the encoded
center offsets. To improve the regression performance, we adopt
the training samples from Gaussian area An based on the action
instances’ center instead of single center point. We concate-
nate multi-frame features along channel dimension as the input
of Movement Regression, which outputs a movement prediction
map M̂ ∈ R(2×K)×W

rs
× H

rs , as shown in Fig. 1(a). For ith action
instance from each frame in current snippet of length K, the regres-
sion target is defined as the offset between the center of the current
frame and the key frame, as follows:

mi
j = (xij − xikey, yij − yikey), j = 1, 2, . . . ,K. (4)

where (xij , y
i
j) is the bounding box center of ith action instance at

jth frame. We optimize the movement map M̂ at the Gaussian area
for training and use the L1 loss as follows:

Lmov =
1

n

n∑
i=1

1

Ni

∑
(x,y)∈Ai

wx,y

∣∣∣M̂x,y −mi
∣∣∣. (5)

where n and Ni are the number of action instances and the number
of samples for ith instance, respectively. Andw is the sample weight
according to their area to balance the instances with different size.

Size regression. To determine the action instance’s box size
for each frame in the action snippet and output a tubelet of length
K. Size regression takes each frame’s feature f ∈ Rc×

W
rs
× H

rs as
input and regresses a size prediction map in a frame-level man-
ner. For each frame in the input snippet, given pixel (x, y) in
Gaussian area Ai, the regression target is defined as the center
offset from (xrs, yrs) to four sides of the bounding box on im-
age scale, represented as (wl, ht, wr, hb)

i
x,y . The predicted box

B̂ = (x̂1, ŷ1, x̂2, ŷ2) at (x, y) can be represented as:

x̂1 = xrs − wl, ŷ1 = yrs − ht,
x̂2 = xrs + wr, ŷ2 = yrs + hb.

(6)

Then we use a GIoU loss related to response of the Gaussian distri-
bution area Ai. So the formula of the Size Regression loss can be
described as follows:

Lsize =
1

n

n∑
i=1

1

Ni

∑
(x,y)∈Ai

wx,yGIoU(B̂ix,y, B
i). (7)

where B̂ix,y stands for the predicted box at position (x, y) and Bi is
the corresponding ith ground-truth box on image scale.

Total loss. The total loss is composed of classification loss Lcls,
center localization loss Lct and regression loss Lreg , weighted by

scalars. We set wcls = 0.01, wct = 1, wreg = 0.5, γ = 0.1 in our
experiment, and the formula is as follows:

Lreg = Lmov + γLsize. (8)

Ltotal = wclsLcls + wctLct + wregLreg. (9)

2.5. Inference

After the training, we can get the results of action instances’ centers
from class-agnostic center localization. Specifically, we treat the top
N = 10 maximums in the estimated heatmap P as centers. With N
action instance centers, we can recognize its action label according
to classification results from STMA. Then we use the positions of
these centers to gather the results of movement regression, which
are used for calculate the other frames’ center in the short snippet.
Finally, we can get bounding box at each action instance’s center of
each frame as a tubelet. After getting the clip-level detection results,
we link these tubelets into final action tubes across time by using
common linking algorithm as [7, 12] for fair comparison.

3. EXPERIMENT

3.1. Experimental Setting

Datasets and metric. We perform experiments on the UCF-24 [16]
and JHMDB [17] datasets and adopt the common settings in data
processing as the previous tubelet-level methods [7, 12]. We utilize
frame mAP and video mAP to evaluate detection performance.

Training details. We choose the DLA34 [22] as our 2D back-
bone with COCO [23] pretrain and 3D ResNext-101 [24] as our
3D backbone with K400 [25] pretrain. We set the input clip length
T = 16 and length of short action snippet K = 5. We set the spatial
downsample rate rs = 4 for 2D backbone, temporal downsample
rate Rt = 16 and spatial downsample rate Rs = 32 for 3D back-
bone. To reduce training time and memory cost, we only input rgb
frames resized to 288 × 288 for training instead of two-stream man-
ner. We adopt the cosine annealing learning rate strategy with an ini-
tial learning rate 0.0001 and set the batch size to 24. And we train the
entire network end-to-end with the Adam optimizer for 16 epochs on
UCF-24 [16] dataset and 12 epochs on JHMDB[17] dataset, which
is performed on 8 RTX 2080Ti GPUs.

3.2. Comparison with the State-of-the-Art methods

In this section, we compare our method with the existing state-of-
the-art spatio-temporal action detection methods on the UCF-24 and
JHMDB datasets as shown in Table 1. For a fair comparison, we also
report two-stream results of these methods. On JHMDB dataset, our
method outperforms other tubelet methods [8, 7, 12, 20] for video-
mAP and get comparable performance to these two-stream based
methods on UCF-24 dataset for both frame-mAP and video-mAP.
This result confirms that our method is effective for localizing pre-
cise tubelets from clips, and can effectively perform action recogni-
tion by aggregating motion and spatio-temporal information.

3.3. Ablation study

Effectiveness of Spatio-Temporal Motion Aggregation (STMA).
In order to verify the effectiveness of STMA, and independently ex-
plore the impact and contribution of each module, we conducted
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UCF-24 JHMDB
Video-mAP Video-mAPMethod Frame-mAP@0.5 @0.2 @0.5 @0.75 @0.5:0.95 Frame-mAP@0.5 @0.2 @0.5 @0.75 @0.5:0.95

Single-stream(RGB)
ACT [7] - - 41.8 - 18.5 - - 60.0 - 34.0
T-CNN [9] 41.4 47.1 - - - - 78.4 76.9 - -
TACNet [20] - - 45.0 - 19.4 - - 64.5 - 35.1
Dance with Flow [11] - - 45.6 - 20.2 - - 63.6 - 38.0
MOC [12] 73.1 78.8 51.0 27.1 26.5 - - - - -
Ours 78.8 83.3 54.1 29.7 28.1 77.6 81.5 80.7 73.2 60.4
Two-stream(RGB+FLOW)
ACT [7] - 77.2 51.4 22.7 25.0 65.7 74.2 73.7 52.1 44.8
STEP [8] 75.0 76.6 - - - - - - - -
TACNet [20] 72.1 77.5 52.9 21.8 24.1 65.5 74.1 73.4 52.5 44.8
Dance with Flow [11] - 78.5 50.3 22.2 24.5 - - 74.7 53.3 45.0
AVA baseline [21] 76.3 - 59.9 - - 73.3 - 78.6 - -
ACRN [6] - - - - - 77.9 - 80.1 - -
MOC [12] 78.0 82.8 53.8 29.6 28.3 70.8 77.3 77.2 71.7 59.1

Table 1. Spatial Temporal action detection performance comparison with state-of-the-art methods on UCF-24 and JHMDB, measured by
both frame-mAP and video-mAP on different IoU thresholds and average mAP.

sufficient ablation experiments on UCF-24 dataset, as shown in Ta-
ble 2. We explored the impact of Class-Agnostic Center Localization
(CAL), Motion Excitation (ME) and Spatio-Temporal Aggregation
(STA) on the performance of both video mAP and frame mAP. We
adopt single stream model from MOC [12] as our baseline model,
the other settings are the same as mentioned in Section 3.1. From
the comparison of “CAL” , “CAL+ME”, “CAL+ME+STA”, we can
find that ME benifits action recognition and improves the perfor-
mance of action detection with the local motion feature. And the
STA is conducive to our model to better integrate long-term spatio-
temporal feature with the local motion information, while CAL can
ensure that long-term spatio-temporal information will not interfere
with the performance of spatial detection.

method STMA strategy F-mAP@0.5 V-mAP@0.2 V-mAP@0.5CAL ME Block STA
base 72.8 77.8 50.2
CAL X 73.1 77.5 50.6
CAL+ME X X 75.4 79.0 51.2
CAL+ME+STA X X X 77.2 80.6 52.6
CAL+ME+GR X X 76.1 80.1 51.9
CAL+ME+STA+GR X X X 78.8 83.3 54.1

Table 2. Ablation study on Spatio-Temporal Motion Aggregation
on UCF-24 dataset to elaborate effects of different settings.

method Gaussian Kernel F-mAP@0.5 V-mAP@0.2 V-mAP@0.5Size Movement
base 72.8 77.8 50.2
Size Regression X 74.4 77.4 50.8
Movement Regression X 73.9 78.3 50.7
Size + Movement X X 74.7 79.2 51.1

Table 3. Ablation study on Gaussian kernel based Regression. It
shows that using Gaussian kernel based area for training benefits
both size and movement regression in action detection task.

Study on Gaussian kernel based regression. To prove the effec-
tiveness of Gaussian kernel based Regression (GR), we performed
ablation study on the UCF-24 dataset, as shown in Table 3. Based on

the baseline mentioned in Sec 3.3, we compared the action detection
performance of GR on Size Regression, Movement Regression and
both of them. The experiment result shows that taking the samples
from the Gaussian kernel region as training samples can improve the
detection performance on movement and size regression.

tubelet length F-mAP@0.5 V-mAP@0.2 V-mAP@0.5
K = 1 77.9 75.8 48.4
K = 3 78.6 77.1 50.6
K = 5 78.8 83.3 54.1
K = 7 78.3 81.3 52.9

Table 4. Ablation study on the tubelet length K.

Study on tubelet length. To explore the influence of tubelet length
K on detection, we set up different tubelet lengthK to perform abla-
tion experiments as shown in Table 4. The result shows that the per-
formance is optimal when K = 5. And when K = 1, our method is
equivalent to a frame-level detector, thus less effective to detect ac-
tion tubes in video-level. The detection performance declines when
K is greater than 5, since the spatial displacement in temporal di-
mension will make movement and size regression hard.

4. CONCLUSION

In this paper, we proposed Spatio-Temporal Motion Aggregation
Network, which performs tubelet-level video action detection in an
anchor-free manner. STMA mechanism integrates the local motion
feature from a short term snippet and the longer spatio-temporal in-
formation to perform action recognition more accurately. Besides,
Gaussian kernel based training strategy makes the movement and
size regression not sensitive to the deviation in center localization,
which improves the detection performance. Experiments conducted
on two benchmarks including UCF-24 and JHMDB have validated
the state-of-the-art performance of our method.
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